Sepam серий 20, 40 с расширенными функциями

Измерения и диагностика Описание

Измерения

Sepam является точным измерительным устройством.

Все данные измерений и диагностики, используемые при вводе в работу или необходимые при эксплуатации оборудования, доступны на самом приборе или дистанционно и выводятся с указанием соответствующих единиц измерения: A, B, Bт и т. д.

Фазный ток

Измерение действующего значения тока в каждой из трех фаз с учетом гармоник (до 13-й гармоники). Для измерения фазного тока используются датчики различных типов:

b трансформаторы тока 1 A или 5 A;

b датчики тока типа LPCT.

Ток нулевой последовательности

Ток нулевой последовательности вычисляется двумя способами, в зависимости от типа устройства Sepam и типа используемых датчиков:

b ток нулевой последовательности IOS, вычисленный как векторная сумма токов в 3 фазах;

b измеренный ток нулевой последовательности I0.

Для измерения тока нулевой последовательности используются различные типы датчиков:

b специальные торы нулевой последовательности CSH 120 или CSH 200;

b трансформатор тока 1 A или 5 A

b любой тор нулевой последовательности с адаптером ACE990.

Потребляемый ток и пиковый потребляемый ток

Потребляемый ток и пиковый потребляемый ток вычисляются по значению фазных токов I1, I2 и I3: разнисление среднего значения тока происходит за период, длительностью которого может быть установлена от 5 до 60 минут;

b пиковый потребляемый ток является наибольшим потребляемым током при максимальной нагрузке. Его значение может быть сброшено в 0.

Напряжение и частота

В зависимости от типа подключенных датчиков напряжения, можно измерять:

b фазные напряжения (V1, V2, V3);

b линейные напряжения (U21, U32, U13);

b напряжение нулевой последовательности (V0);

ь напряжение прямой последовательности (Vd) и напряжения обратной последовательности (Vi);

b частоту f.

Мощность

Значение мощности вычисляется по фазным токам 11, 12 и 13:

ь активная мощность;

ь реактивная мощность;

b полная мощность;

b коэффициент мощности ($\cos \phi$).

Расчет значения мощности основано на методе двух ваттметров.

Метод двух ваттметров точен только при отсутствии тока нулевой последовательности и не применяется в сетях с распределенной нейтралью.

Максиметры мощности

Наибольшее значение потребляемой активной и реактивной мощности вычисляется за тот же период, что и ток нагрузки. Эти значения также могут быть сброшены в 0.

Энергия

b Переданная активная и реактивная энергия в обоих направлениях (4 значения) вычисляется на основании измеренных значений напряжения и фазных токов 11.12 и 13.

b Oт 1 до 4 дополнительных счётчиков для учёта потреблённой активной и реактивной энергии от внешних счётчиков.

Температура

Точное измерение температуры внутри оборудования при помощи резистивных датчиков Pt100, Ni100 или Ni120, подключаемых к дополнительному модулю MET148-2.

Sepam серий 20, 40 с расширенными функциями

Измерения и диагностика Описание

Помощь в диагностике машин

С помощью Sepam пользователь может получить следующую информацию:

ь данные о работе машин;

b прогнозируемые данные для оптимизации процесса управления;

b данные для упрощения настройки и использования защит.

Нагрев

Эквивалентный нагрев машины рассчитывается тепловой защитой. Он отображается в процентах от величины номинального нагрева.

Оставшееся время работы до отключения по перегрузке

Прогнозируемые данные, которые рассчитываются тепловой зашитой.

Эти данные используются оператором для оптимизации управления текущим процессом для принятия решения: о подать вручную команду на отключение;

b продолжить работу, запретив срабатывание тепловой защиты.

Время ожидания после отключения при перегрузке

Прогнозируемые данные, которые рассчитываются тепловой зашитой.

Время ожидания, необходимое для исключения повторного отключения тепловой защитой в случае поспешного включения недостаточно охлажденного оборудования.

Счетчик часов работы / время наработки

Оборудование считается включенным в работу, когда фазный ток превышает значение $0,1\ \mathrm{lb}.$

Суммарное значение времени работы оборудования отображается в часах.

Ток и время пуска двигателя / ток перегрузки двигателя

Двигатель считается включенным в работу или находящимся под перегрузкой, когда фазный ток превышает значение 1,2 lb. При каждом пуске и перегрузке Sepam регистрирует в памяти: b максимальное значение тока, потребляемого двигателем; b продолжительность пуска / перегрузки.

Эти значения сохраняются в памяти до следующего пуска / перегрузки.

Количество пусков до запрета / время запрета

Показывает количество оставшихся пусков в час, разрешенных защитой на ограничение количества пусков, а затем, если количество пусков равно 0, время ожидания отсчитывается внось.

Помощь в диагностике сети

Устройства Sepam имеют функции измерения качества электроэнергии. Вся информация о нарушениях в работе сети, выявленные Sepam, регистрируется для последующего анализа.

Контекст отключения

Запоминание значений токов отключения и величин I0, Ii, U21, U32, U13, V0, Vi, Vd, f, P и Q в момент отключения. В памяти сохраняются значения, соответствующие пяти последним отключениям.

Ток отключения

Запоминание значений токов в 3 фазах и тока замыкания на землю в момент выдачи Sepam последней команды на отключение для индикации тока повреждения.

Эти значения сохраняются в памяти в контексте отключения.

Коэффициент составляющей обратной последовательности / несимметрия

Измерение коэффициента составляющей обратной последовательности фазных токов I1, I2 и I3, характеризующей степень несимметрии питания защищаемого оборудования.

Сдвиг фаз

b. Измерение фазового сдвига ϕ 1, ϕ 2, ϕ 3 соответственно между фазными токами I1, I2, I3 и напряжениями V1, V2, V3.

b Измерение фазового сдвига $\phi 0$ между током нулевой последовательности и напряжением нулевой последовательности.

Запись осциллограмм аварийных режимов

Запись в соответствии с установленными параметрами события:

- b всех измеряемых значений тока и напряжения;
- состояния всех логических входов и выходов;
- b логических данных: срабатывание и т. д.

Характеристики	Sepam серии 20	Sepam серии 40 с расширенными функциями	
Количество записей в формате COMTRADE	2	Задается от 1 до 19	
Общая продолжительность одной записи	86 периодов (1,72 с при 50 Гц, 1,43 с при 60 Гц)	Задается от 1 до 10 с Общая продолжительность записей плюс одна не должна превышать 20 с при 50 Γ ц и 16 с при 60 Γ ц	
Количество отсчетов за период	12	12	
Продолжительность записи до появления события	Задается от 0 до 86 периодов	Задается от 0 до 99 периодов	
Записанные данные	токи или напряжения логические входы пороги срабатывания логический выход О1	токи и напряжения логические входы пороги срабатывания логические выходы О1 - О4	

Определение места повреждения

Функция диагностики сети 21FL вычисляет расстояние до обнаруженного повреждения в сети среднего напряжения. Она связана со следующими функциями защиты:

- b защита от однофазного короткого замыкания 50N/51N или 67N;
- b защита от многофазного замыкания 50/51 и 67.

Функция определения места повреждения активируется только в устройствах, сконфигурированными для отключения выключателя.

Также рассчитывается сопротивление неисправности. Результаты расчета, а также данные по характеру неисправности и неисправным фазам отображаются и сохраняются в контексте отключения. Расстояние до неисправности может быть рассчитано в милях или километрах. Функция 21FL предназначена для входного фидера в сети с несколькими фидерами.

Сохраняются данные последних пяти неисправностях.

Sepam серий 20, 40 с расширенными функциями

Измерения и диагностика Описание

Самодиагностика Sepam

Sepam имеет многочисленные процедуры самотестирования, реализуемые с помощью базового блока и дополнительных модулей. Самотестирование проводится с целью:

b обнаружения внутренних повреждений, которые могут привести к ложному срабатыванию или к неотключению при коротком замыкании:

b установке Sepam в безопасное положение, позволяющее избежать неправильного срабатывания:

b оповещения персонала о необходимости проведения технического обслуживания.

Внутреннее повреждение

Контролируемые внутренние повреждения подразделяются на две категории:

b Серьезные повреждения: Sepam устанавливается в безопасное состояние.

При этом функции защит блокируются, выходные реле переводятся в начальное состояние, а на выходе устройства отслеживания готовности появляется сигнал об остановке Sepam.

b Незначительные повреждения: ухудшение работы Sepam. При этом основные функции Sepam сохраняются, защита оборудования обеспечивается.

Обнаружение подключенных разъемов

Осуществляется контроль наличия разъемов и подключенных датчиков тока и напряжения. Отсутствие соединения представляет собой серьезное повреждение.

Контроль конфигурации

Осуществляется контроль наличия и исправной работы конфигурированных дополнительных модулей. Отсутствие или отказ какого-либо дополнительного модуля представляет собой незначительное повреждение, отсутствие или отказ модуля логических входов/выходов представляет собой серьезное повреждение.

Функция помощи в диагностике распределительных коммутационных аппаратов

Диагностические данные распределительных коммутационных аппаратов предоставляют пользователю следующую информацию:

- механическое состояние распределительного коммутационного аппарата (выключателя);
- b дополнительные данные Sepam, которые используются при проведении профилактического и ремонтно-восстановительного обслуживания распределительных коммутационных аппаратов. Эти измерения нужно сравнивать с данными, предоставленными изготовителями распределительных коммутационных аппаратов.

ANSI 60/60FL — контроль TT/TH

Функция используется для контроля всей цепи измерений:

- b датчики TT и TH;
- ь линия связи;
- b аналоговые входы Sepam.

Контроль осуществляется:

b путем непрерывного контроля измеренных значений тока и напряжения;

b путем проверки данных о состоянии блок-контактов плавкого предохранителя трансформатора фазного напряжения или трансформатора напряжения нулевой последовательности.

В случае потери данных о значениях тока или напряжения, соответствующие функции защиты могут блокироваться во избежание нежелательного отключения.

ANSI 74 — контроль цепи отключения

Для обнаружения повреждения цепи отключения с помощью Sepam осуществляется контроль:

- b присоединения катушек отключения при подаче напряжения;
- b согласованного положения (вкл./откл.) выключателя;
- b выполнения команд включения и выключения выключателя.

Контроль цепи отключения осуществляется только при следующих схемах присоединения.

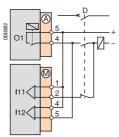


Схема присоединения для управления катушкой отключения при подаче напряжения.

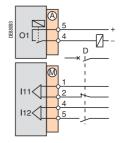


Схема присоединения для управления катушкой отключения при исчезновении напряжения.

Кумулятивное значение токов отключения

Получаемые значения представлены в 6 диапазонах и могут использоваться для оценки состояния полюсов выключателя:

- ь значение полного кумулятивного тока отключения;
- b кумулятивное значение токов отключения в диапазоне от 0 до 2 ln;
- b кумулятивное значение токов отключения в диапазоне от 2 ln до 5 ln;
- b кумулятивное значение токов отключения в диапазоне от 5 ln до 10 ln;
- b кумулятивное значение токов отключения в диапазоне от 10 ln до 40 ln;
- $\,b\,$ кумулятивное значение токов отключения в диапазоне $\,>\,40\,$ ln.

При каждом отключении выключателя значение тока отключения добавляется к полному кумулятивному току отключения, и к кумулятивному значению, соответствующему данному значению тока.

Кумулятивное значение токов отключения выражается в килоамперах в квадрате (кА)2.

Количество коммутаций

Кумулятивное значение количества коммутаций, выполненных автоматическим выключателем.

Время коммутации автоматического выключателя и время взвода привода

Данная функция позволяет оценить состояние механического привода выключателя.

Sepam серий 20, 40 с расширенными функциями

Измерения и диагностика Характеристики

Функции	Диапазон	Точность (1)	Точность (1)	McA141	Сохра
	измерений	Sepam серии 20	Sepam серии 40		нение
Измерения					
. Фазный ток	0,1 - 40 ln ⁽³⁾	±1 %	±0,5 %	b	T
ок нулевой последовательности Расчетный	0,1 - 40 ln	±1 %	±1 %	b	
Измеренный	0,1 - 20 In0	±1 %	±1 %	b	
Среднее значение тока	0,1 - 40 ln	±1 %	±0,5 %	~	
Лаксиметр тока	0,1 - 40 ln	±1 %	±0,5 %		V
Іинейное напряжение	0,06 - 1,2 Unp	±1 %	±0,5 %	b	Ť
Разное напряжение	0,06 - 1,2 Vnp	±1 %	±0,5 %	b	
Напряжение нулевой последовательности	0,04 - 3 Vnp	±1 %	±1 %	2	
Іапряжение прямой последовательности	0,05 - 1,2 Vnp	±5 %	±2 %		
Напряжение обратной последовательности	0,05 - 1,2 Vnp		±2 %		_
астота, Sepam серии 20	50 ±5 Гц или 60 ±5 Гц	±0,05 Гц		b	_
астота, Sepam серии 40 с расширенными функциями	25 - 65 Гц		±0,02 Гц	b	
ктивная мощность	0,015 Sn ⁽²⁾ - 999 МВт	· ·	±1 %	b	
	0,015 Sn ⁽²⁾ - 999 Мвар	-	±1 % ±1 %	b	
Реактивная мощность	0,015 Sn ⁽²⁾ - 999 MBA	<u> </u>	±1% ±1%		
Полная мощность Мочения траничести		-		b	1,,
Максиметр активной мощности	0,015 Sn ⁽²⁾ - 999 MBT	 	±1 %		V
Лаксиметр реактивной мощности	0,015 Sn ⁽²⁾ - 999 Мвар	-	±1 %		V
оэффициент мощности	-1 +1 (ёмк./инд.)	-	±1 %		
Расчетная активная энергия	0 2,1x10 ⁸ МВт • ч	-	±1 % ±1 разряд		V
Расчетная реактивная энергия -	0 2,1х108 Мвар • ч	-	±1 % ±1 разряд		V
⁻ емпература	от -30 до +200 °C	±1 °C от +20 до +140 °C	±1 °C от +20 до +140 °C	b	
Помощь в диагностике сети					
Онтекст отключения					V
ок отключения при фазном замыкании	0,1 - 40 ln	±5 %	±5 %		V
ок отключения при замыкании на землю	0,1 - 20 In0	±5 %	±5 %		V
Коэффициент несимметрии / ток обратной	10 - 500 % lb	±2 %	±2 %		Ť
оследовательности	10 000 70 15				
Сдвиг фаз ф0 (между V0 и I0)	0 - 359°	-	±2°		
Сдвиг фаз ф1, ф2, ф3 (между и I)	0 - 359°	-	±2°		
Запись осциллограмм аварийных режимов	-	-			V ⁽⁴⁾
					ı v
Помощь в диагностике работы электриче					
Нагрев	0 - 800 % (100 % для фазы = lb)	±1 %	±1 %	b	V
Время работы до отключения по перегрузке	0 - 999 мин	±1 мин	±1 мин		
Время ожидания после отключения при перегрузке	0 - 999 мин	±1 мин	±1 мин		
Счетчик часов работы / время работы	0 - 65535 ч	±1 % или ±0,5 ч	±1 % или ±0,5 ч		V
Тусковой ток	S20: 0,5 I- 24 In S40: 1,2 I- 24 In	±5 %	±5 %		V
Время пуска	0 - 300 c	±300 мс	±300 мс		V
Соличество пусков до запрета	0 - 60	1	1		+
Время запрета пуска	0 - 360 мин	±1 мин	±1 мин		
Постоянная времени охлаждения	5 - 600 мин	-	±5 мин		
Помощь в диагностике распределительн		Папатов	_V mm		
умулятивное значение токов отключения	0 - 65535 KA ²	±10 %	±10 %		1,7
кумулятивное значение токов отключения Количество коммутаций	0 - 4.10 ⁹	1	1	_	V
* :	20 - 100 MC		·		
Время срабатывания		±1 мс	±1 MC		V
Время взвода привода	1 - 20 c	±0,5 c	±0,5 c	1	V

b обеспечивается с помощью модуля аналогового выхода MSA141 в соответствии с установленными параметрами.

 $[\]vee$ сохраняется при отключении источника вспомогательного питания. (1) В стандартных условиях (МЭК 60255-6) типичная точность в In или Unp, $\cos \varphi > 0.8$. (2) Sn: полная мощность, = \mathcal{S} . Unp. In.

⁽³⁾ Ориентировочное значение измерения до 0,02 ln. (4) Только для устройств Sepam 40.