Sepam серии 60

ФункцииИзмерения и диагностика Описание

Функции измерения

Sepam является точным измерительным устройством. Все данные измерений и диагностики, используемые при вводе в работу или необходимые при эксплуатации оборудования, доступны в местном режиме или дистанционно, и выводятся с указанием соответствующих единиц измерений: A, B, Bт и т. д.

Фазный ток

Измерение действующего значения тока по каждой из трех фаз с учетом гармоник до 13 порядка. Для измерения фазного тока используются датчики различных типов:

b трансформаторы тока 1 A или 5 A;

b датчики тока типа LPCT (тор Роговского).

Ток нулевой последовательности

В зависимости от типа Sepam и подключаемых датчиков, имеются 2 значения тока нулевой последовательности:

b значение тока нулевой последовательности (IOS), вычисленное по векторной сумме токов в 3 фазах;

b измеренный ток нулевой последовательности (I0).

Для измерения тока нулевой последовательности используются различные типы датчиков:

b специальный тор нулевой последовательности CSH 120 или CSH 200;

b трансформатор тока 1 A или 5 A;

любой тор нулевой последовательности с адаптером АСЕ990.

Среднее значение тока и максиметры тока

Среднее значение тока и максиметры вычисляются по значению тока в каждой из трех фаз I1, I2 и I3:

 $\,^{\circ}$ вычисление среднего значения тока происходит за период, длительностью которого может быть установлена от 5 до 60 минут;

b максимальный потребляемый ток (максиметр) является наибольшим значением среднего тока и позволяет определить потребляемый ток при бросках нагрузки. Значения максиметров могут быть сброшены в 0.

Напряжение и частота

В зависимости от типа подключенных датчиков напряжения, можно проводить измерение:

- b фазных напряжений (V1, V2, V3);
- b линейных напряжений (U21, U32, U13);
- b напряжения нулевой последовательности (V0) или напряжения нейтрали (Vnt);
- b напряжения прямой последовательности (Vd) и напряжения обратной последовательности (Vi)
- частоты, измеряемой по основным и дополнительным каналам напряжения.

Мощность

Значение мощности вычисляется по фазным токам I1, I2 и I3:

- b активная мощность;
- ь реактивная мощность;
- b полная мощность;
- b коэффициент мощности (cos φ).

В зависимости от используемого датчика, значение мощности вычисляется методом двух или трех ваттметров.

Метод двух ваттметров дает точные показания при отсутствии тока нулевой последовательности и не применяется в системах с распределенной нейтралью.

Метод трех ваттметров позволяет пофазно вычислить точное значение мощности трехфазного тока, независимо от системы заземления нейтрали.

Максиметры мощности

Максиметр мощности определяет наибольшие средние значения активной и реактивной мощности, вычисляемые за тот же период, что и среднее значение тока. Значения максиметров мощности могут быть сброшены в 0.

Энергия

b 4 счетчика электроэнергии, вычисляемой в соответствии с измеренными значениями напряжений и фазного тока 11, 12 и 13: производится измерение значений активной и реактивной энергий для каждого направления передачи электроэнергии.

b 1 - 4 дополнительных счетчика для приема импульсов активной или реактивной энергий, выдаваемых внешними счетчиками.

Температура

Точное измерение температуры внутри оборудования, оснащенного резистивными датчиками Pt100, Ni100 или Ni120, подсоединяемыми к дополнительному модулю MET148-2.

Частота вращения

Частота вращения вычисляется путем подсчета импульсов, выдаваемых датчиком, установленным вблизи маркера, приводимого в движение вращением вала двигателя или генератора. Импульсы принимаются на логическом входе.

Векторная диаграмма

Векторная диаграмма отображается с помощью программного обеспечения SFT2841 на большом графическом экране для проверки монтажа, а также для настройки и использования функций направленной защиты.

В зависимости от выбора подключаемых датчиков, на дисплее отображается в виде векторной диаграммы вся информация об измерениях тока и напряжения.

Функции

Измерения и диагностика Описание

Функции помощи в диагностике сети

Устройства Sepam имеют функции измерения качества электроэнергии. Вся информация о нарушениях в работе сети, выявленных с помощью Sepam, регистрируется для последующего анализа.

Контекст отключения

Запоминание значений токов отключения и величин I0, Ii, U21, U32, U13, V1, V2, V3, V0, Vi, Vd, F, P, Q и Vnt в момент отключения. В памяти сохраняются значения, соответствующие пяти последним отключениям.

Ток отключения

Запоминание значений токов в 3 фазах и значений тока нейтрали в момент выдачи Sepam последней команды на отключение, для фиксации тока к.з. (анализ повреждений). Эти значения сохраняются в памяти в контексте отключения.

Количество отключений

2 счетчика отключений:

 $\,$ b количество отключений при фазном замыкании с учетом каждого отключения защитами ANSI 50/51, 50V/51и 67;

b количество отключений при замыкании на землю с учетом каждого отключения защитами ANSI 50N/51 и 67N/67NC.

Коэффициент несимметрии

Измерение коэффициента составляющей обратной последовательности фазных токов I1, I2 и I3, характеристики небаланса питания защищаемого оборудования.

Суммарный коэффициент гармоник

Измерение 2 коэффициентов гармоник, вычисляемых для оценки качества электроэнергии, с учетом гармоник до 13-го порядка:

- b коэффициент гармоник тока, вычисляемый начиная с тока I1;
- b коэффициент гармоник напряжения, вычисляемый начиная с напряжения V1 или U21.

Сдвиг фаз

b измерение фазового сдвига 1, 2, 3 соответственно между фазными токами I1, I2, I3 и напряжениями V1, V2, V3;

 измерение фазового сдвига 0 между током нулевой последовательности и напряжением нулевой последовательности.

Запись осциллограмм аварийных режимов

Запись в соответствии с установленными параметрами события:

- b всех измеряемых дискретных значений тока и напряжения;
- b состояния логических данных всех логических входов и выходов: порог срабатывания и т. д.

Характеристики за	писей	
Количество записей в формате COMTRADE		от 1 до 19
Общая продолжительность одной записи		от 1 до 11 с
Количество отсчетов за период		12 или 36
Продолжительность записи до появления события		от 0 до 99 периодов
Максимальная дли	тельность записи	
Частота сети	12 точек на период	36 точек на период
50 Гц	22 c	7 c
60 Гц	18 c	6 c

Сравнение значений напряжения для контроля синхронизма

Для контроля синхронизма с помощью модуля MCS025 производится постоянное измерение разницы между двумя контролируемыми напряжениями по амплитуде, частоте и фазе.

Контекст потери синхронизма

Сохранение в памяти данных о разнице по амплитуде, частоте и фазе между двумя напряжениями, измеряемыми с помощью модуля MCS025, во время запрета включения выключателей функцией контроля синхронизма.

Описание

Sepam серии 60

Функции Измерения и диагностика

Функции помощи при эксплуатации оборудования

С помощью Sepam пользователь может получить следующую информацию:

- данные о работе оборудования;
- прогнозируемые данные для оптимизации процесса управления оборудованием;
- b данные для упрощения настройки и использования защит.

Нагрев

Значение нагрева двигателя рассчитывается тепловой защитой.

Отображается в процентах от величины номинального нагрева.

Время работы до отключения по перегрузке

Прогнозируемые данные, которые рассчитываются тепловой защитой.

Эти данные используются оператором для оптимизации управления текущим процессом для принятия решения:

- b подачи вручную команды на отключение;
- b за счет срабатывания тепловой защиты от перегрузки.

Время ожидания после отключения при перегрузке

Прогнозируемые данные, которые рассчитываются тепловой защитой.

Показывают время ожидания, необходимое для избежания повторного отключения тепловой защитой в случае слишком поспешного включения недостаточно охлажденного оборудования.

Счетчик часов работы / время работы

Оборудование включается в работу, когда фазный ток превышает значение 0,1 lb. Кумулятивное значение времени работы отображается в часах.

Ток и время пуска двигателя / перегрузка двигателя

Двигатель запускается или находится под перегрузкой, когда фазный ток превышает значение

- 1,2 lb. При каждом пуске и перегрузке Sepam регистрирует в памяти:
- ь максимальное значение тока, потребляемого двигателем;
- ь продолжительность пуска / перегрузки.
- Эти значения сохраняются в памяти до следующего пуска / перегрузки.

Количество пусков до запрета / выдержка времени запрета

Показывает количество оставшихся пусков, разрешенных защитой на ограничение количества пусков, а затем, если количество пусков равно 0, время ожидания до разрешения пуска.

Полное сопротивление прямой последовательности Zd

Показывает значение минимального полного сопротивления, вычисляемого для облегчения использования функций защиты от потери возбуждения (ANSI 40).

Полное сопротивление между фазами (Z21, Z32, Z13)

Показывает значения, вычисляемые для облегчения использования функций защиты по минимальному полному сопротивлению (ANSI 21B).

Емкость

Обеспечивает пофазное измерение общей емкости подключенных конденсаторных батарей. С помощью данного измерения обеспечивается контроль состояния конденсаторов.

Sepam серии 60

Функции

Измерения и диагностика Описание

Самодиагностика Sepam

Sepam имеет многочисленные процедуры самотестирования, реализуемые с помощью базового блока и дополнительных модулей. Самотестирование проводится с целью:

 обнаружения внутренних повреждений, которые могут привести к ложному срабатыванию или к неотключению при коротком замыкании;

b установки Sepam в безопасное положение, позволяющее избежать неправильного срабатывания;

b оповещения пользователя о необходимости проведения технического обслуживания.

Внутреннее повреждение

Контролируемые внутренние повреждения подразделяются на две категории:

b серьезные повреждения: Sepam переходит предварительно определенное безопасное состояние.

При этом функции защит блокируются, выходные реле переводятся в начальное состояние, а на выходе устройства отслеживания готовности появляется сигнал об остановке Sepam. b незначительные повреждения: ухудшение работы Sepam.

При этом основные функции Sepam сохраняются, защита оборудования обеспечивается

Контроль батареи

Осуществляется контроль напряжения батареи, чтобы обеспечить сохранение данных при отключении питания. При отказе батареи выдается аварийный сигнал.

Обнаружение подключенных разъемов

Осуществляется контроль наличия разъемов и подключенных датчиков тока и напряжения. Отсутствие соединения представляет собой серьезное повреждение.

Контроль конфигурации

Осуществляется контроль наличия и исправной работы конфигурированных дополнительных модулей. Отсутствие или отказ какого-либо дополнительного модуля представляет собой незначительное повреждение, отсутствие или отказ модуля логических входов/выходов представляет собой серьезное повреждение.

Помощь в диагностике распределительных коммутационных аппаратов

Диагностические данные распределительных коммутационных аппаратов предоставляют пользователю следующую информацию:

механическое состояние распределительного коммутационного аппарата;

b дополнительные данные Sepam, которые используются при проведении профилактического и ремонтно-восстановительного обслуживания распределительных коммутационных аппаратов.

Эти измерения нужно сравнивать с данными, предоставленными изготовителями распределительных коммутационных аппаратов.

ANSI 60/60FL — контроль TT/TH

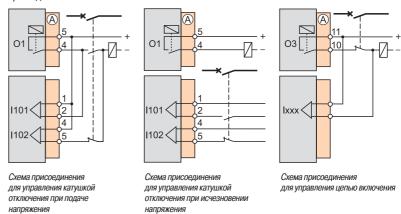
Функция используется для контроля всей цепи измерений:

- b датчики TT и TH;
- b линии связи;
- b аналоговые входы Sepam.

Контроль осуществляется:

b путем непрерывного контроля измеренных значений тока и напряжения;

b путем проверки данных о состоянии блок-контактов плавкого предохранителя трансформатора фазного напряжения или трансформатора напряжения нулевой последовательности.


В случае потери данных о значениях тока или напряжения, соответствующие функции защиты могут блокироваться во избежание какого-либо нежелательного отключения.

ANSI 74 — контроль цепей отключения и включения

Для обнаружения повреждения цепи отключения и включения с помощью Sepam осуществляется контроль:

- **b** присоединения катушек отключения при подаче напряжения;
- b присоединения катушек включения;
- b соответствия состояния выходных контактов Sepam (вкл./откл.) фактическому положению выключателя;
- b выполнения команд включения и выключения выключателя.

Контроль цепей отключения и включения осуществляется только при следующих схемах присоединения.

Кумулятивное значение токов отключения

Получаемые значения представлены в 6 диапазонах и могут использоваться для оценки состояния полюсов выключателя:

- b полное кумулятивное значение тока отключения;
- b кумулятивное значение токов отключения в диапазоне от 0 до 2 ln;
- $\,$ b кумулятивное значение токов отключения в диапазоне от 2 ln до 5 ln;
- b кумулятивное значение токов отключения в диапазоне от 2 ln до 10 ln;
- b кумулятивное значение токов отключения в диапазоне от 10 ln до 40 ln;
- b кумулятивное значение токов отключения в диапазоне > 40 ln.

При каждом отключении выключателя значение тока отключения добавляется к полному кумулятивному току отключения, и к кумулятивному значению, соответствующему данному значению тока

Кумулятивное значение токов отключения выражается в килоамперах в квадрате (kA)². Если значение полного кумулятивного тока превышает уставку, выдается аварийный сигнал.

Количество коммутаций

Кумулятивное значение количества коммутаций, выполненных автоматическим выключателем.

Время коммутации автоматического выключателя и время взвода привода

Количество выкатываний выключателя

Данная функция позволяет оценить состояние механического привода выключателя.

Sepam серии 60

Функции

Измерения и диагностика Характеристики

Функции	Диапазон измерений	Точность (1)	McA141	Сохранение
Измерения				
- Фазный ток	0,02 - 40 In	±0,5 %	b	
Ток нулевой последовательности Расчетный	0,005 - 40 In	±1 %	b	
Измеренный	0.005 - 20 In0	±1 %	b	
Среднее значение тока	0.02 - 40 In	±0,5 %		
Максиметр тока	0,02 - 40 In	±0,5 %		V
Линейное напряжение Основные каналы (U)	0,06 – 1,2 Unp	±0,5 %	b	
Фазное напряжение Основные каналы (V)	0,06 – 1,2 Vnp	±0,5 %	b	
Напряжение нулевой последовательности	0,04 - 3 Vnp	±1 %		
Напряжение нейтрали	0,04 - 3 Vntp	±1 %		
Напряжение прямой последовательности	0,05 - 1,2 Vnp	±2 %		
Напряжение обратной последовательности	0,05 - 1,2 Vnp	±2 %		
Частота Основные каналы (f)	25 - 65 Гц	±0,02 Гц	b	
Активная мощность (общая или по фазам)	0,015 Sn - 999 MBт	±1 %	b	
Реактивная мощность (общая или по фазам)	0,015 Sn - 999 MBap	±1 %	b	
Полная мощность (общая или по фазам)	0,015 Sn - 999 MBA	±1 %	b	
Максиметр активной мощности	0,015 Sn - 999 MBT	±1 %		V
Максиметр вактивной мощности	0,015 Sn - 999 MBap	±1 %		V
максиметр реактивнои мощности Коэффициент мощности	от -1 до + 1 (CAP/IND)	±0,01	b	+
коэффициент мощности Расчетная активная энергия	0 - 2,1 x 108 Мвт • ч	±0,01 ±1 % ±1 разряд		VV
Расчетная активная энергия Расчетная реактивная энергия	0 - 2,1 x 108 MBap • 4	±1 % ±1 разряд ±1 % ±1 разряд		VV
·	-30 °C - +200 °C	±1 °C - от +20 до +140 °C	b	
Температура	-30 C- +200 C	±1 С-01+20д0+140 С		
Частота вращения	0 - 7200 об./мин	±1 об./мин		
Помощь в диагностике сети	0 1200 00./mm	_ 1 00./mm		
Контекст отключения				V
Ток отключения	0.02 - 40 In	±5 %		V
Количество отключений	0 – 65535			VV
Коэффициент несимметрии / ток обратной последовательности	1 - 500 % lb	±2 %		
Суммарный коэффициент гармоник тока	0 - 100 %	±1 %		
Суммарный коэффициент гармоник напряжения	0 - 100 %	±1 %		+
Сдвиг фаз ф0 (между V0 и I0)	0 - 359°	±2°		
Сдвиг фаз ф1, ф2, ф3 (между и I)	0 - 359°	±2°		
Сдвиг фаз ф г, ф г, ф г (между и г) Запись осциллограмм аварийных режимов	0 - 339			V
Отклонение амплитуды	0 - 1,2 Uсинх.1	±1 %	_	-
Отклонение частоты	0 - 1,2 осинх. 1	±0,5 Гц		
Отклонение частоты	0 - 101ц 0 - 359°	±2°		
Контекст потери синхронизма	0 - 339	±Ζ		V
помощь в диагностике работы электрической машинь				1.
		±1 %	b	Ivv
Нагрев	0 - 800 % (100 % для фазы I = Ib)	±1 70	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Время работы до отключения по перегрузке	0 - 999 мин	±1 мин		1
Время ожидания после отключения при перегрузке	0 - 999 мин	±1 мин		†
Счетчик часов работы / время работы	0 - 65535 ч	±1 % или ±0,5 ч		VV
Пусковой ток	1,2 I- 40 In	±5 %		V
Время пуска	0 - 300 c	±300 мс		V
Бремя пуска Количество пусков до запрета	0-60	-000 IVIO		
Время запрета пуска	0 - 360 мин	±1 мин		+
сдвиг фаз 01, 02, 03 (между токами I)	0 - 359°	±1 мин ±2°		+
Сдвиг фаз 61, 62, 63 (между токамит) Полное сопротивление Zd, Z21, Z32, Z13	0 - 339	±5 %		+
Емкость	0 - 200 кОм	±5 %		+
емкость Помощь в диагностике распределительных коммутаци		±3 70		
		±10.0%		VV
Кумулятивное значение токов отключения	0 - 65535 KA ²	±10 %		VV
Количество коммутаций	0 - 4 x 10 ⁹	-		
Время срабатывания	20 - 100 MC	±1 мс		VV
Время взвода привода	1 - 20 c	±0,5 c		VV
Количество выкатываний выключателя	0 - 65535	-		VV

b обеспечивается с помощью модуля аналогового выхода MSA141 в соответствии с установленными параметрами;

[∨] сохраняется при отключении источника вспомогательного питания, даже без батареи;

 $[\]checkmark$ сохраняется при отключении источника вспомогательного питания при наличии батареи. (1) В стандартных условиях (МЭК 60255-6) типичная точность в In или Unp, $\cos \varphi > 0.8$.